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Department of Physics, Kansas State University, Manhattan, KS 66506, USA 

Received 6 June 1990 

Abstract. We present the first direct numerical study of a model for stochastically growing 
interfaces with a conserved height-field, proposed by Sun, Guo and Grant. The scaling 
exponent calculated in the simulation is in excellent agreement with the dynamic renormaliz- 
ation group calculations by the above authors. 

The dynamics of stochastically growing interfaces has received considerable attention 
in recent years [l-61. One class of problems, which has been studied extensively, 
includes the Eden 171 and the ballistic-deposition models 181. These growth models 
produce compact clusters with a rough interface, the width or thickness of which shows 
interesting scaling behaviour. Additional interest in the scaling behaviour of the 
interface width developed when Kardar, Parisi and Zhang [9] proposed a nonlinear 
stochastic differential equation (hereafter referred to as the KPZ equation) to govern 
the growth of profiles for the above class of processes [lo-131. The KPZ equation 
received added attention since it was realized that this equation is closely related to 
other physical problems such as randomly stirred fluids [ 141 and directed polymers in 
random media [15, 161. 

Recently, Sun, Guo and Grant ( S G G )  [ 171 have considered a situation of a growing 
interface where the total volume under the interface is conserved. In order to study 
this case, they have suitably generalized the KPZ equation for a conserved height-field 
and investigated the dynamics of this new model by using renormalization group 
methods. The conservation law seems to lead to a different universality class from that 
discussed by KPZ since scaling exponents for the width of the interface are found to 
be different from the KPZ model. The above authors have also studied a conserved 
restricted solid-on-solid model by computer simulation methods and found good 
agreement between the theoretical scaling exponents and those computed from the 
simulation of the microscopic model. However, no direct numerical study of the 
conserved model of SGG has yet been carried out. 

In this letter, we present results of the first direct numerical study of the SGG model 
in two dimensions. We calculate the scaling exponent of the width of the growing 
interface and find good agreement with the theoretical predictions of SGG. 

The KPZ equation for the interface profile is written in terms of a coarse-grained 
interface height variable h ( r ,  t )  in a d-dimensional system as 
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where v and A are constants, and the noise q is a Gaussian distributed stochastic 
variable of mean ( q( r, t ) )  = 0 and correlations given by 

( q ( r ,  t ) q ( r ' ,  t ' ) ) = 2 ~ ~ ~ - ' ( r - r ' ) ~ ( t - f ' )  ( 2 )  
where D is a constant and the vector r defines the ( d  - 1) dimensional space of the 
'substrate'. The long-time, large-length scale behaviour of the model can be probed 
by measuring the width of the interface defined as 

W(L,  t ) = J ( h ( r ,  t ) * ) - ( h ( r ,  t))' (3)  

where L is the linear size of the substrate. The asymptotic behaviour of the interface 
width W ( L ,  t )  is found to obey the scaling relation 

w = LXf ( t /  L') (4) 

x + z = 2 .  ( 5 )  

where the exponents x and z are related by 

The equation (4) leads to two interesting limits: (1) if L-,oo, then for finite but 
sufficiently large t ,  W (  t )  - tX" = t P  and ( 2 )  for finite L and t -, CO, W (  L )  - Lx. In two 
spatial dimensions, the values of the exponents x and z found by KPZ are given by 
x = $  and z = z  (i.e. p = f ) .  

The model proposed by SGG also starts with a coarse-grained height variable h'( r, t )  
and is described by the following equation for h'(r ,  t ) :  

3 

+ t ( r ,  t )  
at 

where &(r, t )  is a Gaussian noise term given by 

( [ ( r ,  t ) l ( r ' ,  t ' ) )  = - 2 ~ ' ~ ~ 6 ~ - ' ( r -  r ' ) S ( t  - t ' ) .  (7) 
The conservation law for total h' is obeyed since the right-hand side of (6), including 
the noise term 5, can be written as the divergence of some current. The width of the 
interface W ( L ,  t )  satisfies a scaling relation similar to (4): 

W ( L ,  t )  = t " j - ( t /LZ ' )  (8) 

X ' S  z' = 4 (9) 

but now the scaling exponents x' and z' are related by 

instead of ( 5 ) .  SGG also found that for d = 2, x' = 5 ,  z' = 'j' and p' = x'/z '  =A. 
Our numerical study of the SGG model ((6) and (7)) is carried out for d = 2  (i.e. 

for a one-dimensional substrate). We choose v'= 1, D'= 1 and consider both A ' =  2 
and A '=4  in our simulations. We consider an L=8192 lattice and carry out the 
simulations up to t = 500 with a time step of A t  = 0.01. We always start with h'(r, t )  = 0 
everywhere as the initial configuration and average over 50 runs in order to take an 
ensemble average over the noise. 

In figure 1 we show a log-log plot for the width W ( t )  against t for h ' = 2 .  The 
slope of the straight line in this plot yields p' ,  i.e. x ' / z ' .  We find that, for A'=2 ,  
p' = 0.095 * 0.005. This value of p' is in excellent agreement with the theoretical value 
of A, considering our error bars. We have also considered A = 4 in our study although 
in this case the simulation is carried out only until t = 100 and was averaged over 20 
runs due to unavailability of computer time. We find a similar value of p' is this case 
( p '  = 0.09*0.01). 
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Figure 1. Width W( t )  against t in a log-log plot for the SGG model. The full line is the 
best fit to the data with an exponent p'=0.095*0.005. The theoretical value of p' [17] 
is A. 

We could not probe the other scaling exponent x for this model for the following 
reason. The value of z' in this case is quite large ( z '  = y )  compared to the KPZ case 
( z  = 3). In order to compute the exponent x one needs to probe the asymptotic limit 
t >> L"' such that W (  L, t )  - Lx in that limit. Even for a small value of L ( L  - 100) this 
limit is difficult to reach in the computer simulation. However, since the exponent p' 
agrees quite well with the theoretical calculations, we expect that x' and z' independently 
will also be given by their theoretical values. 

To conclude, then, we have carried out the first numerical integration study of a 
model for stochastically growing interfaces in the presence of a conservation law. We 
find very good agreement of the computed values of the scaling exponent p with those 
obtained from dynamic renormalization calculations. 

Many valuable discussions with Martin Grant and Hong Guo are acknowledged. The 
computations were carried out using the Cornel1 National Supercomputer Facility, a 
resource of the Cornell Theory Center, which is funded in part by the National Science 
Foundation, New York State, the IBM corporation and the members of the Center's 
Corporate Research Institute. 
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